INTRODUCTION

Physics is the major science dealing with the fundamental constituents of the universe, the forces they exert on one another and the results produced by these forces. It is the root of every field of science and underlies all natural phenomena. Studying Physics and the physicist’s methods of acquiring and evaluating knowledge should therefore be regarded as an integral part of the education for all science students.

G.C.E (Advanced Level) Physics syllabus is designed as a two year course to provide the basic background in Physics that would be required by those intending to proceed to higher studies as well as by those who would utilize the knowledge of Physics in various fields and daily life.
1.1 National goals

1. Based on the concept of respecting human values and understanding the differences between the Sri Lankan multi-cultural society, building up the nation and confirming the identity of Sri Lanka by promoting national integrity, national unity, national coherence and peace.

2. While responding to the challenges of the dynamic world, identifying and conserving the national heritage.

3. Creating an environment which comprises the conventions of social justice and democratic life to promote the characteristics respecting human rights, being aware of the responsibilities, concerning each other with affectionate relationships.

4. Promoting a sustainable life style based on people’s mental and physical wellbeing and the concept of human values.

5. Promoting positive feelings needed for a balanced personality with the qualities of creative skills, initiative, critical thinking and being responsible.

6. Developing the human resources, needed for the progress of the wellbeing of an individual, the nation as well as the economic growth of Sri Lanka, through education.

7. Preparing the people for the changes that occur in a rapidly changing world by adapting to it and controlling them; developing abilities and potentialities of people to face complex and unexpected occasions.

8. Sustaining skills and attitudes based on justice, equality, mutual respect essential to achieving a respectable place in the international community.

1.2 Basic Competencies

The competencies promoted through the education mentioned below help to achieve the above mentioned National Goals.

i. Competencies in Communication

This first set of competencies is made up of four subsets - Literacy, Numeracy, Graphics and Information Communication skills:

- **Literacy:** Listening, carefully, speaking clearly, and reading for comprehension, writing clearly and accurately.
- **Numeracy:** Using numbers to count, calculate, code and to measure, matter, space and time.
- **Graphics:** Making sense of line and form, expressing and recording essential data, instructions and ideas with line, form, colour, two and three-dimensional configurations, graphic symbols and icons.
- **ICT Competencies:** Knowledge of computers, and the ability to use the information communication skills at learning or work as well as in private life.

ii. Competencies relating to personality development

- Generic skills such as creativity, divergent thinking, initiative, decision making, problem-solving, critical and analytical thinking, team work, inter-personal relationships, discovering and exploring
- Values such as integrity, tolerance and respect for human dignity.
- Cognition

iii. Competencies relating to the environment

This is the second set of competencies related to the Social, Biological and Physical Environments.

Social Environment: Awareness, sensitivity and skills linked to being a member of society, social relationships, personal conduct, general and legal conventions, rights, responsibilities, duties and obligations.

Biological Environment: Awareness, sensitivity and skills linked to the living world, man and ecosystem, the trees, forests, seas, water, air and life - plant, animal and human life.
Physical Environment: Awareness, sensitivity and skills relating to space, energy, fuel, matter, materials and their links with human living, food, clothing, shelter, health, comfort, respiration, sleep, relaxation, rest, waste and excretion, media of communication and transport.

Included here are the skills in using tools to shape and materials for living and learning.

iv. Competencies relating to preparation for the world of work

Employment related skills to maximize their potential and to enhance their capacity to contribute to economic development; to discover their vocational interests and aptitudes; to choose a job that suits their abilities and to engage in a rewarding and sustainable livelihood.

v. Competencies relating to religion and ethics

- Develop competencies pertaining to managing environmental resources intelligently by understanding the potential of such resources.
- Develop competencies related to the usage of scientific knowledge to lead a physically and mentally healthy life.
- Develop competencies pertaining to becoming a successful individual who will contribute to the development of the nation in collaboration, engage in further studies and undertake challenging job prospects in the future.
- Develop competencies related to understanding the scientific basis of the natural phenomena and the universe.
- Use appropriate technology to maintain efficiency and effectiveness at an optimum level in utilizing energy and force.
2.0 Aims of the syllabus

At the end of this course students will be able to;

1. acquire sufficient understanding and knowledge to become confident citizens in a technological world.

2. recognize the usefulness and limitations of scientific method and to appreciate its applicability in everyday life.

3. develop abilities and skills that are relevant to the study and practice of Physics in day-to-day life.

4. develop attitudes relevant to Physics such as concern for accuracy and precision, objectivity, enquiry, initiative and inventiveness.

5. stimulate interest and care for the environment.

6. acquire manipulative, observational and experimental skills together with hands-on experience on the equipments used by physicists.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Number of periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 01 Measurement</td>
<td>30</td>
</tr>
<tr>
<td>Unit 02 Mechanics</td>
<td>110</td>
</tr>
<tr>
<td>Unit 03 Oscillations and Waves</td>
<td>100</td>
</tr>
<tr>
<td>Unit 04 Thermal Physics</td>
<td>60</td>
</tr>
<tr>
<td>Unit 05 Gravitational Field</td>
<td>20</td>
</tr>
<tr>
<td>Unit 06 Electrostatic field</td>
<td>60</td>
</tr>
<tr>
<td>Unit 07 Magnetic Field</td>
<td>40</td>
</tr>
<tr>
<td>Unit 08 Current Electricity</td>
<td>70</td>
</tr>
<tr>
<td>Unit 09 Electronics</td>
<td>40</td>
</tr>
<tr>
<td>Unit 10 Mechanical Properties of Matter</td>
<td>40</td>
</tr>
<tr>
<td>Unit 11 Matter and Radiation</td>
<td>30</td>
</tr>
</tbody>
</table>

Total 600
<table>
<thead>
<tr>
<th>Grade</th>
<th>Term</th>
<th>Competency Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 12</td>
<td>First Term</td>
<td>From 1.1 to 2.5 (11 Competency Levels)</td>
</tr>
<tr>
<td></td>
<td>Second Term</td>
<td>From 2.6 to 3.5 (08 Competency Levels)</td>
</tr>
<tr>
<td></td>
<td>Third Term</td>
<td>From 3.6 to 4.9 (15 Competency Levels)</td>
</tr>
<tr>
<td>Grade 13</td>
<td>First Term</td>
<td>From 5.1 to 7.6 (12 Competency Levels)</td>
</tr>
<tr>
<td></td>
<td>Second Term</td>
<td>From 8.1 to 10.2 (10 Competency Levels)</td>
</tr>
<tr>
<td></td>
<td>Third Term</td>
<td>From 10.3 to 11.7 (07 Competency Levels)</td>
</tr>
<tr>
<td>Competency</td>
<td>Competency Level</td>
<td>Content</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| 01. Uses experimental and mathematical frames in physics for systematic explorations | 1.1 Inquires the scope of physics and how to use the scientific methodology for explorations | • Introduction to physics
 - Explaining simply the subject area of physics and how it relates to daily life and nature
 - How physics contributed to the development of society
 - Basic concepts in scientific methodology | • explains physics as the study of energy, behavior of matter in relation to energy and transformation of energy.
 • describes physics as a subject that focuses from fundamental particles to the Universe.
 • expresses how to use principles of physics in day-to-day life and to explain natural phenomena.
 • elaborates how physics has been applied in development of new technologies in areas such as
 - Transportation
 - Communication
 - Energy production and energy usage
 - Medicine
 - Earth and space explorations
 • uses the scientific method for scientific explorations.
 • accepts that advancements in physics are based on observations and inferences made on them. | 02 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 1.2 Uses units appropriately in scientific work and daily pursuits. | | • Physical quantities and units
 • Fundamental physical quantities
 • International system of units (SI units)
 ▪ Base units
 ▪ Supplementary units
 • Derived physical quantities and derived units
 • Physical quantities without units
 • Multiples and submultiples of units | • identifies basic physical quantities and derived physical quantities.
• uses appropriate SI base units and derived SI units.
• appreciates that all physical quantities consist of a numerical magnitude with or without a unit.
• uses the prefixes and their symbols to indicate multiples and submultiples.
• converts units appropriately.
• uses the knowledge of scientific notation | 04 |
| 1.3 Investigates physical quantities using dimensions. | | • Dimensions
• Dimensions of basic physical quantities used in mechanics
 • Mass
 • Length
 • Time
• Dimensions of derived physical quantities
• Uses of dimensions
 • Testing the correctness of a physical equation
 • Finding the units of a given quantity
 • Deriving expressions | • identifies dimensions of basic physical quantities used in mechanics
• checks the correctness of equations dimensionally.
• uses dimensions to derive expressions
• uses dimensions to determine units of physical quantities. | 04 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 1.4 Takes measurements accurately by selecting appropriate instruments to minimize errors. | | • Measuring instruments
• Principle, Least count and Range
• Errors of measurement
• Systematic Error
• random Error
• Fractional error and percentage error
• Laboratory measuring instruments
 • Metre ruler
 • Vernier calipers
 • Micrometer screw gauge
 • Spherometer
 • Travelling microscope
• Triple beam balance/Four beam balance/electronic balance
• Stop clock/stopwatch/ Digital stopwatch
• Digital multimeter
• **Laboratory practical’s Using measuring instruments**
 • Vernier calipers
 • Micrometer screw gauge
 • Spherometer
 • Travelling microscope | • describes the importance of taking measurements during experiments and in day-to-day activities
• identifies the least count of an instrument
• select suitable measuring instruments for measurements.
• explains vernier principle and micro meter principle
• uses vernier caliper, travelling microscope, micrometer screw gauge, spherometer, triple beam balance, four beam balance electronic balance, stopwatch and digital stop watch to measurements.
• explains the effects of systematic errors (including zero errors) and random errors in measurements.
• calculates fractional error and percentage error.
• appreciates the purpose of calculating fractional error and percentage error.
• determine the depth , internal radius and external radius of a hollow cylinder using a vernier caliper. (practical)
• determine diameter and thicken of a coin using a micrometer screw gauge. (practical)
• determine surface radius of a carved mirror/ lenses using a spherometer. (practical) | 12 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 1.5 Uses vector addition and resolution appropriately. | | Scalars and vectors
- Scalar quantities
- Vector quantities
- Geometrical representation of a vector quantity
- Resultant vector of two vectors in the same line and parallel lines
- Two inclined vectors
 - Parallelogram law
 - Triangle method
- System of vectors
 - Polygon method
- Resolution of vectors | determine internal and external radius of a rubber tube using a travelling microscope. (practical)
calculates density of a regular shape object using suitable measuring instruments out of given instruments. (practical)
distinguishes between scalar and vector quantities and give examples of each.
represents a vector geometrically.
add and subtract coplanar vectors.
finds the resultant of two inclined vectors using vector parallelogram law.
finds the resultant of vectors using triangle method.
finds the resultant of vectors using polygon method.
resolves a vector into two perpendicular components.
give examples for instances where a single force is applied instead of several forces and vice versa. | 08 |
Unit 2 - Mechanics

<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 2. Lays a foundation for analyzing motion on the basis of principles of physics. | 2.1 Analyze one dimensional and two dime | • Kinematics
 • Relative motion
 • Motion in the same direction
 • Motion in the opposite directions
 • Rectilinear motion under constant acceleration
 • Graphs of motion
 • $s-t$ graphs
 • $v-t$ graphs
 • Equations of motion
 • Motion in a straight line
 • Projectile motion under gravity | • gives examples for the instances that can be described using the concept of relative motion.
 • writes equations of relative motion using standard symbols.
 • calculates the velocity of an object relative to another object moving at constant velocity on parallel paths in the same direction and in opposite directions.
 • uses graphs of displacement vs. time and velocity vs. time to calculate displacement, velocity and acceleration as appropriate.
 • derives equations of motion using $v-t$ graph.
 • uses equations of motion for constant acceleration to describe and predict the motion of an object along a straight path on a horizontal plane, vertical motion under gravity and motion on a frictionless inclined plane.
 • describes vertical and horizontal motion of a projectile under gravity.
 • calculates the position and velocity of a projectile. | 15 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 2.2 Uses resultant force and moment of force to determine the centre of gravity of a body. | | • Resultant of forces
• Resultant of two forces
• Resultant of a system of coplanar forces
• Moment of a force
• Moment of a force about a point
• Moment of a couple (of forces)
• Resultant of parallel forces and the line of action (parallel forces in the same direction)
• Centre of gravity of a body
• Centre of gravity of regular shaped bodies
• Centre of gravity of regular shaped compound bodies
• Centre of mass | • give examples for the applications related to projectiles.
• represents the motion of an object graphically
• describes the motion of an object using graph of motion
• carries out numerical calculations to solve problems using graphs and equations of motion.
• describe the resultant of forces.
• writes an algebraic expression for the resultant of forces using parallogram law.
• uses force resolution method and force parallelogram law to find the resultant of system of coplanar forces
• finds the resultant of two parallel forces in the same direction and the line of action
• describes the center of gravity using the resultant of perjured forces
• finds the centre of gravity of regular shaped compound bodies.
• find the weight of a body experimentally using the force parallelogram law. and verification the law. | 15 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 2.3 Uses Newton’s laws of motion to analyze the motion of a body. | | • Determination of weight of a body using the law of parallelogram of forces | • finds the moment of a force and the moment of couple
• explains the motion of a body when the force acts through the centre of mass.
• explains the motion of a body when the force acts away from the center of mass.
• conducts simple activity to find the centre of gravity of a plane object | 20 |
| | | • Force and motion
• Mass
• Inertial mass
• Gravitational mass
• Inertial and non – inertial frames
• Newton’s first law of motion
• Momentum
• Newton’s second law of motion
• Obtaining \(F = ma \)
• Defining the unit ‘newton’
• Impulse and impulsive forces
• Principle of conservation of linear momentum
• elastic and inelastic collisions
• Newton’s third law of motion
• Applications of Newton’s laws | • states that inertia of a body as the reluctance to change the state of motion.
• realizes mass as a measure of translational inertia.
• introduces gravitational mass as the mass obtaind due to the gravitational force.
• states newton’s laws of motion.
• defines force using Newtons 1st law.
• derive \(F = ma \)
• define the newton as the SI unit of force.
• uses Newton’s laws of motion and the concept of momentum to analyze dynamic situations involving constant mass and constant forces.
• uses free body force diagrams to analyze the forces acting on a body and determine the net force. |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| | | • Self adjusting forces
 | | • distinguishes the action force and the reaction force. | |
| | | • Tension
 | | • realizes that these forces (action and reaction) always exist. | |
| | | • Thrust / compression
 | | • realizes that the impulsive force is generally a variable force acting only for a short time. | |
| | | • Frictional forces
 | | • gives examples for instances where impulsive forces are used. | |
| | | • Static friction
 | | • identifies the nature of self adjusting forces. | |
| | | • Limiting friction
 | | • analyzes the effects of friction on dynamic systems. | |
| | | • Dynamic friction
 | | • carries out calculations related to limiting friction and dynamic friction. | |
| | | • Free body force diagrams
<pre><code> | | • carries out numerical calculations to solve problems using Newton’s laws | |
</code></pre>
<p>| | | | • describes the states of friction as static friction, limiting friction and dynamic friction. | |
| | | | • carries out calculations related momentum and its conservation. | |
| | | | • conducts simple activities to demonstrate Newton’s laws | |</p>
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 Manipulates the conditions necessary to keep a body in equilibrium.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Equilibrium</td>
<td>• conducts activities to identify the conditions for equilibrium of a point object.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Conditions for equilibrium</td>
<td>• conducts activities to identify the conditions for equilibrium of a rigid object under system of coplanar forces.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Principle of moments</td>
<td>• describes the conditions for equilibrium of three parallel coplanar forces.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Equilibrium under two forces</td>
<td>• describes the conditions for equilibrium of three non parallel coplanar forces.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Equilibrium of coplanar forces</td>
<td>• expresses the principle of moments.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Three non parallel forces</td>
<td>• uses the triangle of forces and the principle of moments to solve simple problems related to equilibrium of forces.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Three parallel forces</td>
<td>• uses force resolution method to solve problems related to equilibrium of forces.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Theorem of triangle of forces</td>
<td>• uses the concepts of equilibrium to stabilize a system.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Polygon of forces</td>
<td>• identifies three states of equilibrium.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• States of equilibrium</td>
<td>• Conduct an experiment to find the weight of a body using the principle of moments.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Stable</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unstable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Neutral</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determination of weight of a body using the principle of moments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competency</td>
<td>Competency Level</td>
<td>Content</td>
<td>Learning outcomes</td>
<td>No. of Periods</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| 2.5 Consumes and transforms mechanical energy productively. | | • Work, energy and power
 • Work
 • Work done by force in translational motion
 • Mechanical energy
 • Kinetic energy
 • Translational kinetic energy
 • Potential energy
 • Gravitational potential energy
 • Elastic potential energy
 • Power and efficiency
 • Principle of conservation of energy
 • Principle of conservation of mechanical energy
 • Work-energy principle | • uses the expressions for work done, kinetic energy, potential energy and power to calculate energy changes and efficiencies.
• expresses elastic potential energy in terms of tension and extension.
• expresses elastic potential energy in terms of force constant and extension
• uses principle of conservation of energy and the principle of conservation of mechanical energy to solve numerical problems.
• states work – energy principle.
• investigates how energy can be used productively.
• recalls and understands the concepts of power and efficiency.
• applies the conservation of energy and conservation of linear momentum in problem solving related to collisions and explosions.
• explains the difference between an elastic collision and inelastic collision. | 15 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 2.6 Investigates the concepts related to rotational motion and circular motion. | • Rotational motion
 • Angular displacement
 • Angular velocity
 • Frequency of rotation
 • Angular acceleration
 • Equations of rotational motion under uniform angular acceleration
 • Moment of inertia
 • Thin uniform rod
 • Thin uniform ring
 • Uniform circular disk and cylinder
 • Uniform sphere
 • Angular momentum
 • Torque
 • Relationship between torque, moment of inertia and angular acceleration
 • Principle of conservation of angular momentum
 • Work done in rotational motion
 • Rotational kinetic energy | • define angular displacement, angular velocity, and angular acceleration and expresses in SI units.
 • relate rpm value and angular velocity
 • relate linear displacement to angular displacement, tangential speed to angular speed and acceleration to angular acceleration.
 • describes rotational motion using time period and frequency.
 • writes equation of rotational motion
 • solve problems using equations of rotational motion.
 • explain that the moment of inertia is the measure of rotational inertia.
 • expresses moments of inertia of a point mass about an axis as \(I = mr^2 \)
 • expresses moment of inertia of a body about an axis as \(I = \sum m_i r_i^2 \) | 15 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| | | • Circular motion with uniform angular velocity in a horizontal plane
| | | • Frequency
| | | • Period
| | | • Tangential velocity
| | | • Centripetal acceleration
| | | • Centripetal force | • demonstrates that moment of inertia depends on mass, axis of rotation and mass distribution.
| | | | • relate moment of inertia and angular acceleration to the torque acting on it $\tau = I\alpha$
| | | | • expression angular momentum as the product of moments of inertia and angular velocity.
| | | | • predicts the motion of a rotating body by determining the torque acting on it.
| | | | • solves numerical problems associated with moment of inertia, torque and angular momentum
| | | | • gives examples related to principle of conservation of angular momentum.
| | | | • conduct simple activities to demonstrate the principle of conservation of angular momentum.
| | | | • analyzes situations in which an object moves round a circle at uniform speed.
<p>|</p>
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>calculates the centripetal acceleration of an object moving round a horizontal circular path at a uniform speed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>identifies centripetal forces of various circular motions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>relates the centripetal acceleration of such an object to the forces acting on it.</td>
<td></td>
</tr>
<tr>
<td>2.7 Uses the principles and laws related to fluids at rest in scientific work and daily pursuits.</td>
<td></td>
<td>Hydrostatics</td>
<td>solves problems relating to comparison of densities with Hare’s apparatus and U-tube.</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hydrostatic pressure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Atmospheric pressure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compare densities of liquids</td>
<td>applies Pascal’s principle to solve problems and to explain the working principle of hydraulic systems.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>using a U-tube</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>using Hare’s apparatus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transmission of pressure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pascal’s principle and its applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Up thrust</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Archimedes’ principle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Floatation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conditions for floatation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Principle of floatation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hydrometer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determinations of density of liquids using the weighted test tube</td>
<td>verifies Archimedes principle theoretically and practically</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>compares densities of liquids using U.Tube and Hares apparatus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>finds the density of a liquid using hydrometer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compare densities using U tube and Hare's apparatus</td>
<td></td>
</tr>
<tr>
<td>Competency</td>
<td>Competency Level</td>
<td>Content</td>
<td>Learning outcomes</td>
<td>No. of Periods</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| 2.8 Uses the principles and laws related to flowing fluids in scientific work and daily pursuits. | | • Fluid-dynamics
• Streamline flow and turbulent flow
• Equation of continuity for a steady, streamline flow
• Bernoulli’s principle (derivation not necessary)
• Applications of Bernoulli’s principle | • distinguishes between streamline and turbulent flow.
• uses the equation of continuity for a steady streamline flow.
• states the conditions under which Bernoulli’s principle is valid.
• applies Bernoulli’s principle to solve problems.
• conducts simple activities to demonstrate Bernoulli’s principle. | 08 |
Unit 3 - Oscillations and Waves

<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 3. Uses the concepts and principles related to waves to broaden the range of sensitivity of human. | 3.1 Analyzes oscillations on the basis of physics. | **Oscillations**
- Simple harmonic motion
- Physical quantities related to simple harmonic motion
- Amplitude
- Frequency
- Period
- Energy
- Definition of S. H. M
- Characteristic equation of the simple harmonic motion

 \[a = -\omega^2 x \]

- Simple harmonic motion as a projection of a uniform circular motion
- Phase
- Phase difference
- Equation of displacement (Only for oscillations starting with \(x = 0 \) and \(t = 0 \))

 \[x = A \sin \omega t \]

- Displacement – time graph corresponding to simple harmonic motion
- Small oscillations of a simple pendulum | **describes the conditions necessary for simple harmonic motion.**
- defines simple harmonic motion.
- recognizes and uses \(a = -\omega^2 x \) as the characteristic equation of simple harmonic motion.
- relates the motion of an oscillating object to the forces acting on it.
- Explain amplitude, frequency and period of a simple harmonic motion.
- describes the interchange between kinetic and potential energy during simple harmonic motion.
- illustrates the S.H.M. as a projection of a circular motion.
- Introduce phase angle.
- identifies the state of the motion of a particle in S.H.M. using the phase.
- uses phase difference to illustrate of motion of two S.H.M.s
- finds the displacement of an oscillating particle starting from center position. (\(x = A \sin \omega t \))
- uses the displacement – time graph of the particle to explain the S.H.M. | 15 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| - Period $T = 2\pi \sqrt{\frac{l}{g}}$ | - Determination of gravitational acceleration by using simple pendulum | - Small oscillations of a mass suspended by a light helical spring.
 - Period $T = 2\pi \sqrt{\frac{m}{k}}$ | - determines the gravitational acceleration using simple pendulum
 - determines the spring constant of a light helical spring
 - distinguishes free, damped and forced oscillations.
 - demonstrates forced oscillations and resonance using Barton’s pendulum.
 - give practical examples of forced oscillations and resonance.
 - investigate that there are some instances in which resonance is useful and other instances in which resonance should be avoided. | |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| **3.2 Investigates various types of wave – motions and their uses.** | | • Mechanical waves
• Transverse waves
• Longitudinal waves
• Graphical representation of a wave
• Physical quantities related to waves
• Frequency – \(f \)
• Wavelength – \(\lambda \)
• Speed - \(v \)
• Amplitude – \(A \)
• Speed of waves \(v = f\lambda \) | • demonstrates wave motion using slinky
• describes wave motion in terms of S.H.M. of particles.
• distinguishes between longitudinal and transverse waves.
• represents the wave motion graphically and identify points in same phase (in phase) and different phase (out of phase).
• identifies wavelength using points of the same phase.
• deduce \(v = f\lambda \) from the definitions of speed, frequency and wavelength
• solves problems related to wave motion. | **08** |
| **3.3 Investigates the uses of waves on the basis of their properties** | | • Properties of waves
• Reflection
• Rigid reflection
• Soft reflection
• Refraction
• Diffraction
• Polarization
• Principle of superposition of waves
• Interference
• Stationary waves
• Beats
 \[f_b = |f_1 - f_2| \] (derivation is not necessary)
• Comparison of stationary waves and progressive waves | • conducts simple activities to demonstrate the properties of waves by using ripple tank and a string/ slinky
• states reflection, refraction, interference and diffraction as common properties of waves.
• demonstrate rigid reflection and soft reflection through simple activities.
• distinguishes rigid reflection and soft reflection.
• describes change of velocity, wavelength and direction in different media to describe the effects of refraction.
• defines refractive index. | **15** |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>● relate, refractive index with speed, wavelength and angle of incidence and angle of refraction.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[n_2 = \frac{V_1}{V_2} = \frac{\lambda_1}{\lambda_2} = \frac{\sin i}{\sin r}]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● carries out numerical calculations on refraction.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● states the principle of superposition of waves.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● graphically represents the principle of superposition of waves.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● uses the principle of superposition of waves to explain the occurrence of interference, stationary waves and beats qualitatively.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● demonstrates stationary waves using string vibrator.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● states conditions to be satisfied to produce stationary waves.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● represents stationary waves graphically.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● compares stationary waves and progressive waves</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● demonstrates beats using CRO and tuning forks.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● carries out numerical calculations on beats and stationary waves.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● explains diffraction, interference and polarization qualitatively.</td>
<td></td>
</tr>
<tr>
<td>Competency</td>
<td>Competency Level</td>
<td>Content</td>
<td>Learning outcomes</td>
<td>No. of Periods</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| 3.4 Uses the modes of vibration of strings by manipulating variables. | | • Stationary waves in strings
 • Stationary waves in a stretched string
 • Speed of transverse waves
 \[v = \frac{T}{\sqrt{m}} \]
 • Modes of vibrations in a stretched string
 • Fundamental tone
 \[f_0 = \frac{1}{2\pi} \sqrt{\frac{T}{m}} \]
 • Overtones and harmonics
 Sonometer
 • Determination of the frequency of a tuning fork by changing the tension of the string
 • Verification of the relationship between the vibrating length and frequency
 • Speed of longitudinal wave
 \[v = \frac{E}{\sqrt{\rho}} \]
 • Seismic waves, Earth quakes, Richter scale and Tsunami | • gives the expression for the speed of transverse waves in terms of the tension and the liner density.
 • explains the numerical patterns of resonant frequencies for stationary waves on strings.
 • identifies fundamental mode, overtones and harmonic.
 • derives expressions for the frequencies of fundamental mode and overtones.
 • carries out calculations on stationary wave patterns on strings.
 • finds the frequency of a tuning fork using sonometer.
 • investigates experimentally the relationship between the vibrating length and the frequency.
 • gives the expression for the speed of longitudinal waves in terms of elastic modules and density.
 • describes seismic waves, Earth quakes, Richter scale and formation of tsunami qualitatively.
 • prepares a report to explain earthquake and Tsunami | 12 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 3.5 Uses the vibrations in air columns by manipulating the variables. | | • Waves in gases
 • Speed of sound in air
 \[v = \sqrt{\frac{\gamma P}{\rho}} \]
 \[v = \sqrt{\frac{\gamma RT}{M}} \]
 • Factors affecting the speed of sound in air
 • Modes of vibrations in an air column
 • Closed tube
 • Open tube
 • **Determination of the speed of sound in air using a one end closed tube**
 • by using one tuning fork
 • by using a set of tuning forks (graphical method) | • gives the expression for the speed of wave in air.
• deduces \[v = \sqrt{\frac{\gamma RT}{M}} \]
• describes the effect of pressure, temperature, molar mass and humidity on the speed of sound in air.
• describes the formation of stationary waves open tube and close tube.
• explains the numerical patterns of resonant frequencies of harmonics for stationary waves in one end close tube and open tubes.
• obtains expression for the fundamental and overtone frequencies in a resonance tube.
• designs experiments to determine the speed of sound in air and the end correction of the tube using one tuning fork.
• designs experiments to determine the speed of sound in air and the end correction of the tube using set of tuning forks.
• carries out calculations on stationary waves in resonant tubes | 10 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 3.6 Inquires about the uses of Doppler effect. | | • Doppler effect
• Equations for apparent frequency
• Only the observer is moving
• Only the source is moving
• Both observer and source are moving along the same line
• Sonic boom | • conducts simple activities to demonstrate the Doppler effect.
• derives expression for the apparent frequency, considering the change of wave length due to the motion of the source.
• derives expression for the apparent frequency considering relative speed of sound due to the motion of the observer
• deduces an expression for the apparent frequency of the source and the observer are moving
• describes phenomena related to change in apparent frequency using Doppler effect
• applies the Doppler effect to sound with appropriate qualitively.
• Describes how shock wave is formed.
• explains the applications and explanations related to Doppler effect. | 05 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 3.7 Produces and propagates sound by considering characteristics of sound. | | • Nature of sound
• Characteristics of sound
• Pitch
• Loudness
• Quality of sound
• Limits of hearing
• Threshold of hearing
• Threshold of pain
• Intensity and intensity level of sound (decibel)
• Graph of intensity level versus the frequency for human ear | • describes the characteristic properties of sound.
• uses the graph of intensity level versus the frequency for human ear to explain various situations.
• conducts activities to demonstrate characteristics of sound
• carries out numerical calculations related to intensity level (decibel) and intensity
• introduces ultrasonic and infrasonic qualitatively.
• uses the knowledge of properties of sound in day-to-day activities
• explains the importance of having proper sound levels. | 05 |
| 3.8 Inquires about electromagnetic waves. | | • Electromagnetic waves
• Electromagnetic spectrum
• Properties of electromagnetic waves
• Uses of electromagnetic waves
• LASER
• Principle
• Properties
• Uses | • state that electromagnetic waves consist of oscillating of electric and magnetic fields.
• states that electromagnetic waves generate due to the acceleration or deceleration of charge particles.
• represents electromagnetic waves graphically.
• categorizes electromagnetic waves using electromagnetic spectrum. | 05 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 3.9 Applies the principles of refraction of light for daily pursuits. | | - Geometrical optics
- Refraction
- Laws of refraction
- Refractive index
- Absolute refractive index
- Relative refractive index
- Relationship between refractive indices
- Relationship between real depth and apparent depth
- Apparent displacement
\[d = \frac{t}{1 - \frac{1}{n}} \]
- Determination of the refractive index of glass using a travelling microscope | - describes the properties of electromagnetic waves
- describes the applications of electromagnetic waves in each of the main wavelength ranges
- explains the principle of LASER
- identifies the properties and uses of LASER beams.
- designs activities to determine images formed due to refraction.
- state laws of refraction.
- define absolute and relative refraction indices.
- obtains the relationship between real depth and apparent depth.
- obtains the relationship for apparent displacement.
- carries out calculations to solve problem related to and apparent displacement.
- carries out calculations on refraction at plane boundaries and total internal reflection.
- finds the refractive index of glass using travelling microscope. | 15 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical angle</td>
<td></td>
<td>• describes critical angle and total internal reflection.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relationship between the critical angle and the relative refractive index $n = \frac{1}{\sin C}$</td>
<td></td>
<td>• deduces the relationship between critical angle and refractive index.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total internal reflection</td>
<td></td>
<td>• designs an experiment to find the refractive index using critical angle method.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refraction through a prism</td>
<td></td>
<td>• draws a ray diagram for a ray through a prism.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental investigation of deviation of a light ray through a prism</td>
<td></td>
<td>• describes the refraction for a ray through a prism.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deviation</td>
<td></td>
<td>• conducts an experiment to investigate the variation of derivation with the angle of incidence.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d-i$ graph</td>
<td></td>
<td>• introduces the angle of minimum derivation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum deviation</td>
<td></td>
<td>• derives the relationship between prism angle, refractive index and the angle of minimum deviation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relationship between prism angle, refractive index and the angle of minimum deviation.</td>
<td></td>
<td>• carries out three main adjustment of the spectrometer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determination of the refractive index of material of prism by critical angle method</td>
<td></td>
<td>• uses spectrometer to find the angle of minimum deviation and the angle of a prism.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectrometer</td>
<td></td>
<td>• find the images formed by lenses using no parallax method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main adjustments</td>
<td></td>
<td>• carries out activity to find image formed by lenses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determination of the angle of a prism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finding the angle of minimum deviation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competency</td>
<td>Competency Level</td>
<td>Content</td>
<td>Learning outcomes</td>
<td>No. of Periods</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>3.10 Applies the knowledge of images formed by lenses for the correction of defects of vision appropriately.</td>
<td></td>
<td>• Refraction through thin lenses</td>
<td>• constructs images formed by lenses using ray diagrams</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Real and virtual images of convex and concave lenses</td>
<td>• define linear magnification.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lens formula with Cartesian sign convention</td>
<td>• obtains expression for linear magnification</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Linear magnification</td>
<td>• define power of a lens.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determinaton of focal length of convex lenses and concave lenses</td>
<td>• derives lens formula by geometrical method using Cartesian sign convention.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Power of a lens</td>
<td>• uses the experiseon for the focal length of a thin lens combination in contact.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Combination of thin lenses in contact</td>
<td>• carries out numerical calculations to solve problems for lenses and lens combination</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Human eye</td>
<td>• uses the power of a lens asConverging(+), Diverging(-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Formation of an image</td>
<td>• conducts experimentation to determine the focal length of convex lenses and concave lenses</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Visual angle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defects of vision and correction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Short sight</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Long sight</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Presbyopia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competency</td>
<td>Competency Level</td>
<td>Content</td>
<td>Learning outcomes</td>
<td>No. of Periods</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>3.11</td>
<td></td>
<td>Optical instruments • Simple microscope • Normal adjustment • Magnifying power (Angular magnification) • Compound microscope • Normal adjustment • Magnifying power (Angular magnification) • image at infinity • Astronomical telescope • Normal adjustment • Magnifying power (Angular magnification) • image at near point</td>
<td>explains of simple/compound microscope and astronomical telescope properly. • defines magnifying power (angular magnification) of microscope and telescope. • sketches ray diagrams to explain how a simple and compound microscope work and carry out related calculations. • sketches ray diagrams to explain how astronomical telescopes work</td>
<td>06</td>
</tr>
<tr>
<td>Competency</td>
<td>Competency Level</td>
<td>Content</td>
<td>Learning outcomes</td>
<td>No. of Periods</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| 04. Uses the knowledge of heat to fulfill human needs and for scientific work productively | 4.1 Measures temperature correctly by selecting appropriate thermometer according to the need. | • Temperature
 • Thermal equilibrium
 • Zeroth law of thermodynamics
 • Thermometric properties
 • Expression for temperature based on two fixed points
 \[\theta = \frac{x_H - x_L}{x_L - x_H} (\theta_H - \theta_L) + \theta_L \]
 • Celsius scale
 \[\theta = \frac{x_H - x_L}{x_L - x_H} \times 100^\circ C \]
 • Absolute scale (Thermodynamic scale)
 • Absolute zero
 • Triple point of water
 • Expression for absolute temperature based on triple point of water
 \[T = \frac{x_T}{x_{tr}} \times 273.16 \]
 • Relationship between Celsius and absolute temperatures
 \[T = \theta + 273.15 \] | • states that (thermal) energy is transferred from a region of higher temperature to a region of lower temperature.
 • states zeroth law of thermodynamics
 • understands that regions of equal temperature are in thermal equilibrium.
 • states thermometric properties.
 • gives examples for thermometric properties and states fixed points of temperature scale.
 • understands that there is an absolute scale of temperature that does not depend on the property of any particular substance (i.e. the thermodynamic scale and the concept of absolute zero)
 • states expression for temperature based on two fixed points.
 • states triple point of water.
 • states expression for absolute temperature based on triple point of water.
 • explains the different types of thermometers.
 • relates and uses Kelvin and Celsius temperature scales. | 06 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Thermometers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mercury/alcohol in glass thermometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• carries out numerical calculations to solve problems related to expression of temperature.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• explains uses of mercury/alcohol in glass thermometers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2 Inquires about the instances where the expansion of solids and liquids are used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Thermal expansion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Expansion of solids</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Linear expansion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Area expansion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Volume expansion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Relationship between linear, area and volume expansivities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Volume expansion of liquids</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Real expansion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Apparent expansion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• $V_{real} = V_{apparent} + 3\alpha$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Derivation not necessary)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Variation of density with temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Anomalous expansion of water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• explains heat expansion.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• defines linear area and volume expansivities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• states expression for linear, area and volume expansion.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• expresses relationship between linear, area and volume expansivities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• defines real expansion of liquid.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• defines apparent expansion of liquid.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Introduces relationship between γ_{real}, $\gamma_{apparent}$ and α.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• carries out numerical calculations to solve problems related to thermal expansion of solids and liquids.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• explains the variation of density of liquids due to thermal expansion of liquids.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• explains phenomena related to anomalous expansion of water.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>06</td>
<td></td>
</tr>
<tr>
<td>Competency</td>
<td>Competency Level</td>
<td>Content</td>
<td>Learning outcomes</td>
<td>No. of Periods</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>---------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>4.3 Investigates the behavior of gases</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gas laws</td>
<td>• expresses the Boyle’s low.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Boyle’s law</td>
<td>• investigates relationship between volume and temperature at constant pressure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Determination of the atmospheric pressure using quill tube</td>
<td>• expresses the Charle’s low.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Charles’s law</td>
<td>• investigates relationship between pressure and temperature at constant volume.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Investigation of relationship between volume and temperature at constant pressure</td>
<td>• expresses the pressure low.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pressure law</td>
<td>• determines the atmospheric pressure using quill tube</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Investigation of relationship between pressure and temperature at constant volume</td>
<td>• derives the ideal gas equation, (pV = nRT)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ideal gas equation (pV = nRT)</td>
<td>• uses gas laws to explain the behavior of gases.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dolton’s law of partial pressure</td>
<td>• analyzes the behavior of gases using ideal gas equation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• expresses Dolton’s law of partial pressure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• carries out numerical calculations to solve problems using gas laws.</td>
<td></td>
</tr>
<tr>
<td>Competency</td>
<td>Competency Level</td>
<td>Content</td>
<td>Learning outcomes</td>
<td>No. of Periods</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>---------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>4.4 Inquires about the pressure exerted by a gas on its container using kinetic theory of gases.</td>
<td>• Kinetic theory of gases • Elementary assumptions of the kinetic theory • $pV = \frac{1}{3} N m^2$ (Derivation is not necessary) • Expression for mean translational kinetic energy of an air molecule,</td>
<td>• states the basic assumptions of the kinetic theory of gases. • explains how molecular movement causes the pressure exerted by a gas • relates temperature to the mean kinetic energy of molecules of a gas. • explains the distribution of molecular speeds at different temperatures • carries out calculations using the kinetic theory equation • appreciates the kinetic theory of gases in explaining the behavior of gasses based on microscopic behavior of gas molecules.</td>
<td>04</td>
<td></td>
</tr>
<tr>
<td>4.5 Quantifies the amount of heat exchange among the objects using the specific heat capacity of substances.</td>
<td>• Heat exchange • Heat capacity • Specific heat capacity of solids and liquids • Molar heat capacities of gases • Determination of specific heat capacities of solids by the method of mixtures • Newton’s law of cooling • Determination of specific heat capacities of a liquid by the method of cooling</td>
<td>• defines heat capacity of an object • defines specific heat capacity of solids and liquids. • defines principle molar heat capacities of gases. • conducts experiment to find specific heat capacity of solids by the method of mixtures. • carries out calculations considering heat exchange. • expresses Newton’s law of cooling. • conducts experiment to find specific heat capacities of a liquid by the method of cooling. • uses Newton’s law of cooling to carry out calculations on heat loss.</td>
<td>08</td>
<td></td>
</tr>
<tr>
<td>Competency</td>
<td>Competency Level</td>
<td>Content</td>
<td>Learning outcomes</td>
<td>No. of Periods</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>---</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>4.6 Inquires about the productive use of the heat exchange during the change in state of matter.</td>
<td></td>
<td>- Change of state</td>
<td>- describes qualitatively physical process associated with the change of state.</td>
<td>08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- State of matter</td>
<td>- states that melting and boiling take place without a change in temperature.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Qualitative molecular account of the difference between solids, liquids and gases</td>
<td>- defines specific latent heat of vaporization</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Simple explanation of the molecular processes in fusion and boiling</td>
<td>- defines specific latent heat of fusion.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Fusion (melting)</td>
<td>- explains that specific latent heat of vaporization is higher than specific latent heat of fusion for the same substance.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Specific latent heat of fusion</td>
<td>- carries out numerical calculations of the latent heat of substance.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Determination of specific latent heat of fusion of ice (method of mixtures)</td>
<td>- identifies fusion and vaporization using the graph of temperature vs. time.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Vaporization at Boiling</td>
<td>- conducts experiments to determine latent heat of fusion of ice</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Specific latent heat of vaporization</td>
<td>- conducts experiment to determine latent heat of vaporization of water.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Determination of specific latent heat of vaporization of water (method of mixtures)</td>
<td>- states the effect of pressure on boiling point and melting point.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Effect of pressure on boiling point and melting point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competency</td>
<td>Competency Level</td>
<td>Content</td>
<td>Learning outcomes</td>
<td>No. of Periods</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| 4.7 Relates the effect of water vapour on weather. | | • Vapour and humidity
• Evaporation
• Comparison of evaporation and vaporization (boiling)
• Vapour pressure and saturated vapour pressure
• Variation of vapour pressure with temperature
• Variation of vapour pressure with volume
• Dew point
• Absolute humidity
• Relative humidity
• Determination of relative humidity using polished calorimeter | • differentiates evaporation and boiling
• explains the behavior of unsaturated and saturated water vapour.
• illustrates graphically the variation of saturated vapour pressure and unsaturated vapour pressure with temperature.
• illustrates graphically the variation of saturated vapour pressure and unsaturated vapour pressure with volume.
• defines the dew point.
• defines absolute humidity.
• defines relative humidity.
• empresses relative humidity in terms of unsaturated vapors pressure and saturated vapor pressure at room temperature.
• expresses relative humidity in term of dew point and saturated vapor pressure at room temperature.
• explains the humidity refers to the moisture (amount of water vapour present) in the atmosphere.
• carries out numerical calculations to solve problems on relative humidity, absolute humidity and dew point.
• correlates the boiling point and saturated vapour pressure
• conducts experiment of find Relative Humidity | 08 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 4.8 Uses laws of thermodynamics to analyze the various thermodynamic processes. | Thermodynamics | - Explains heat as a state of transfer of energy.
- Internal energy.
- First law of thermodynamics $\Delta Q = \Delta U + \Delta W$.
- Special instances where the first law of thermodynamics is applicable.
- Constant pressure processes.
- Constant volume processes.
- Isothermal processes.
- Adiabatic processes.
- Cyclic processes.
- Pressure – volume curves for above processes. | - Explains heat as a state of transfer of energy.
- Relates a rise in temperature of a body to an increase in its internal energy.
- Explains the first law of thermodynamics.
- Uses the first law of thermodynamics to explain the changes of a gas.
- Explains how the internal energy of a system changes during a constant pressure processes.
- Explains whether internal or external work is done during a constant pressure processes.
- Applies first law of thermodynamics for constant pressure processes.
- Explains that the internal energy of a system changes during a constant volume processes.
- Explains work done is zero during a constant volume processes.
- Applies first law of thermodynamics for constant volume processes.
- Explains that change of internal energy is zero during an isothermal processes.
- Applies first law of thermodynamics for isothermal processes.
- Explains that heat exchange is zero during the adiabatic processes.
- Applies first law of thermodynamics for adiabatic processes. | 04 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 4.9 Designs daily and scientific work by considering the methods and amount of transfer of heat. | | • Transfer of heat
• Conduction
• Thermal conductivity
• Equation for the rate of conduction of heat
• Temperature variation of lagged & nonlagged uniform rods.
• Determination of thermal conductivity of a metal
• **Searle’s method**
• Convection
• Radiation | • conducts simple activities to demonstrate, constant pressure constant volume, isothermal and adiabatic processes
• draws $P-V$ curves for above processes.
• draws $P-V$ curves for a given cyclic processes.
• explains given cyclic processes using $P-V$ curves
• carries out numerical calculations using the first law of thermodynamics. | 06 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 5. Uses laws and principles of gravitation to be productive in daily pursuits and scientific work. | 5.1 Analyses the effect of gravitational force on objects using Newton’s law of gravitation. | • Gravitational force field
• Gravitational force between two masses
• Newton’s law of universal gravitation
• Gravitational force field
• Gravitational field intensity
• Field intensity at a point away from a point mass
• Field intensity at a point outside a spherical mass
• Graphical representation of the variation of field intensity
• Gravitational potential
• Expression for gravitational potential at a point distance \(r \) from a point mass \(m \): \[V = -\frac{Gm}{r} \] (derivation is not necessary)
• Potential energy of a mass in a gravitational field
• Graphical representation of the variation of potential with distance | • States that the attractive force between masses named as gravitational force.
• Express Newton’s gravitational law.
• Uses Newton’s law to calculate the gravitational force between two masses
• Explain the concept of force field.
• States that all masses create gravitational field
• Understands that gravitational field as a field of force.
• Explains the concept of gravitational field as actions at a distance.
• States that the gravitational forces directly proportional to the mass of the object.
• Uses the concept of gravitational field to calculate the force exerted on a mass in a gravitational field
• Defines gravitational field intensity.
• Uses Newton’s law of gravitation to find gravitational field intensity at a point due to a point mass and spherical mass (away from the sphere).
• Represents graphically the variation of gravitational field intensity with the distance from a point mass.
• Defines gravitational potential at a point. | 08 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 5.2 Inquires about the instances of using the knowledge on Earth’s gravitational field to fulfill human activities. | | • Earth’s gravitational field
• Gravitational field intensity near the Earth surface
• Relationship between the acceleration due to gravity and gravitational field intensity
• Earth satellites
• Geostationary satellites
• Escape velocity | • state that a mass posses potential energy when it is in a gravitational field.
• calculates gravitational potential at a point in a gravitational field.
• uses the expression for the potential energy of a mass in a gravitational field.
• represents graphically the variation of gravitational potential with the distance from a point mass and outside a spherical mass.
• uses knowledge obtained regarding gravitational fields to deduce corresponding relationships in Earth’s gravitational field.
• explains the variation of gravitational field intensity from the earth surface.
• deduces an expression for the gravitational field intensity on the earth surface.
• states that the gravitational field intensity is numerically equal to the gravitational acceleration.
• derive the expression \((mgh)\) for gravitational potential energy.
• explain the condition that is needed to satisfy to orbit a satellite on a circular path around the earth.
• Find physical quantities related to satellite motion, describing conditions for such motions. | 12 |
<table>
<thead>
<tr>
<th>Competency Level</th>
<th>Competency</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>• relates tangential speed, angular speed, time period and frequency of a satellite with radius of the orbit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• explain the condition for geostationary satellite.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• carries out calculations related to satellite motion in circular orbits.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• appreciates the uses of satellites.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• derives an expression for escape velocity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• gives example which can be explained using the concept of escape velocity.</td>
<td></td>
</tr>
<tr>
<td>Competency</td>
<td>Competency Level</td>
<td>Content</td>
<td>Learning outcomes</td>
<td>No. of Periods</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| 6. Uses laws and principles of electrostatic field for scientific work and daily pursuits effectively. | 6.1 Uses the laws related to electrostatic force appropriately to find the distribution and magnitude of electrostatic field produced by various charged objects | - Electrostatic force
- electrostatic force between two charges
- Coulomb’s law
- Electric field intensity
- Electric field lines
 - Around a point charge
 - Around two point charges
 - Between two charged parallel plates
- Field intensity of a point due to a point charge
- Graphical representation of the variation of field intensity | - uses coulomb’s law to calculate the electrostatic force between two charge
- states that all charges create electric fields
- defines electric field intensity.
- uses the equation $F_B = EQ$ to find the force on a charge placed in an electrostatic (electric) field.
- uses the concept of electric field lines to illustrate the electric field
- draws Electric field lines in various electric fields.
- explains the properties of electric field lines.
- calculates the field intensity at a point in an electric field using Coulomb’s law.
- finds resultant electric field intensity at a point due to distribution of point charges.
- graphically represents the variation of electric field intensity with the distance from a point charge. | 15 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2 Quantifies the electrostatic field using the flux model.</td>
<td></td>
<td>Flux model</td>
<td>states Gauss’s theorem.</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electric flux</td>
<td>uses Gauss’s theorem to find the electric field intensity due to point charge, spherical conductor near an infinite charge plate and charge wire.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gauss’s theorem</td>
<td>applies the Gauss’s theorem to find electrostatic field intensity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Finding electrostatic field intensities using Gauss’s theorem</td>
<td>represents graphically the variation of field intensity with distance from the centre of the sphere.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Around a point charge</td>
<td>calculates electric field intensity due to different charged objects using relevant expressions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Near an infinite charge plate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Around a charged conducting sphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Outside the sphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• On the surface of the sphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inside the sphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Field intensity at a distance r from an infinitely long charged thin wire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3 Quantifies the potential energy of charges placed in an electrostatic field.</td>
<td></td>
<td>Electric potential</td>
<td>defines electric potential.</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Definition of potential at a point in an electrostatic field</td>
<td>finds the electric potential at a point due to a point charge and distribution of point charges.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potential at a point due to a point charge, $V = \frac{1}{4\pi \varepsilon_0} \frac{q}{r}$ (derivation is not necessary)</td>
<td>illustrates graphically the variation of electric potential with the distance from the centre of conducting sphere.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potential at a point due to distribution of point charges</td>
<td>finds electric potential energy of a charge in an electric field.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potential difference between two points</td>
<td>defines potential difference between two points in an electric field.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Work done in moving a charge across a potential difference</td>
<td>defines electron volt as a unit of energy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potential energy of a charge in an electric field</td>
<td>expresses the relation between potential gradient and electric field intensity.</td>
<td></td>
</tr>
<tr>
<td>Competency</td>
<td>Competency Level</td>
<td>Content</td>
<td>Learning outcomes</td>
<td>No. of Periods</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| 6.4 Uses capacitors appropriately in electrical circuits. | | • Potential energy of a system with two charges
• Potential gradient
• Relationship between potential gradient and electric field intensity
• Equipotential surfaces
• Equipotential surfaces in different fields
• Near a point charge
• Near like point, charges Near unlike point charges | • carries out numerical calculations to solve problems related to electric potential and potential energy.
• draws equipotential surfaces in different fields. | |
| | | • Electric capacitance
• Definition of capacitance
• Parallel plate capacitor
• Derivation of the equation
• Capacitance of a spherical conductor (spherical capacitors are not included)
• Combination of capacitors
• Series combination
• Parallel combination
• Energy stored in a charged capacitor
• Derivation of expression for energy
• Distribution of charges on conductors having different shapes
• Point discharge (corona discharge) | • defines the capacitance of a parallel plate capacitor.
• derives the expression for capacitance of a parallel plate capacitor and a conducting sphere.
• obtains the equivalent capacitance of capacitors in series and capacitors in parallel.
• derives expressions for energy stored in a charged capacitor
• solves problems related to capacitors.
• interprets the charge distribution of conductors having different shapes using diagrams. | 15 |
Unit 7 – Magnetic fields

(40 periods)

<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 7. Uses the effects of interrelationships between electricity and magnetism for scientific work and daily pursuits. | 7.1 Manipulates the variables to control the force acting on a current carrying conductor and moving charge placed in a magnetic field. | - Magnetic force
- Force acting on a current carrying conductor placed in a magnetic field
- Expression for the magnitude of force
- Magnetic flux density
- Fleming’s left hand rule
- Force acting on a charge moving in a magnetic field
- Magnitude of the force
- Direction of the force
- Hall effect
- Qualitative explanation
- Derivation of an expression for Hall voltage | - states that moving charges or current carrying conductor creates magnetic field
- demonstrates the nature of electromagnetic force using current balance
- defines magnetic flux density.
- expresses the magnetic force in terms of magnetic flux density, current and the length of the conductor.
- uses the expression for force acting on a moving charge in a magnetic field.
- finds the direction of the above magnetic force by Fleming’s left hand rule.
- solves problems related to magnetic force and magnetic flux density.
- explains Hall effect
- derives expression for hall voltage.
- solves problems related to Hall effect.
- gives examples for the applications of Hall effect | 12 |
| 7.2 Constructs magnetic fields by manipulating variables for the needs. | | - Magnetic force field
- Biot –Savart law
- Maxwell’s corkscrew rule
- Magnetic flux density near a current carrying infinitely long straight conductor (derivation is not necessary) | - expatesses Biot-Savart law
- derives the expression for magnetic flux density at the center of a current carrying flat circular coil.
- mentions the expressions for magnetic flux density outside an infinitely long straight conductor carrying currents. | 15 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 7.3 Inquires the rotational effect due to the inter-relationship of electricity and magnetism. | | • Magnetic flux density at the centre of a current carrying circular coil
• Magnetic flux density along the axis of a current carrying long solenoid (derivation is not necessary)
• Magnitude of the force between two current carrying infinitely long parallel conductors
• Definition of Ampere
• Torque acting on a current loop
 • Rectangular coil placed in a uniform magnetic field
 • Rectangular coil placed in a radial magnetic field
 • Moving coil galvanometer
 • Expression for deflection
 • Factors affecting the current sensitivity
 • Direct current motor | • mentions the expressions for magnetic flux density along the axis of a carrying currents long solenoid
• derives the expression for the force between two parallel infinitely long current carrying conductors.
• solves problems related to magnetic flux density of current carrying infinitely long straight conductor, circular coil and long solenoid.
• defines “Ampere”
• derives expressions for torque acting on a current carrying rectangular coil placed in a uniform magnetic field.
• deduces the expression for the torque acting on a current carrying rectangular coil placed in a radial magnetic field.
• solves problems related to torque acting on a current loop.
• explains the structure and the function of moving coil galvanometer.
• derives an expression for the deflection of the moving coil galvanometer
• describes current sensitivity of the moving coil galvanometer.
• describes the structure and function of a direct current motor with one armature coil. | 15 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 8. Uses the laws principles and effects of current electricity productively and appropriately | 8.1 Manipulates the physical quantities related to current electricity wherever appropriate | • Fundamental concepts
• Electric charges and electric current \(I = \frac{Q}{t} \)
• Mechanism of conduction of electricity through a metallic conductor
• Expression for the relationship between current and drift velocity
• Current density
• Potential difference
• Resistance and resistivity \(R = \frac{\rho}{A} \)
• Variation of resistance with temperature
• Temperature coefficient of resistance
• Superconductivity
• Behavior of superconductors
• Super conducting materials
• Properties of superconductors
• Uses of superconductors
• Combination of resistors
• Series combination
• Parallel combination
• Ohm’s law | • defines electric current as the rate of flow of charges.
• explains the mechanism of conduction of electric current through a metallic conductor.
• derives an expression for the relationship between current and drift velocity.
• deduces an expression for current density.
• defines resistance.
• States factors which effect the resistance
• defines resistivity.
• explains variation of resistance with temperature of conductors and insulators.
• appreciates the properties and uses of superconductors
• states Ohm’s law.
• explains the behavior of ohmic and non-ohmic conductors using I-V Curves.
• uses potential divider circuit to obtain variable voltages
• finds equivalent resistance of simple networks
• solves problems using ohms law | 12 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| | | • Conditions for validity of Ohm’s law
| | | • I-V curves
| | | • Ohmic conductors
| | | • Non-ohmic conductors
| | | • Potential divider circuit | |
| 8.2 | | **Energy and power**
| | | • Expression for energy dissipated due to flow of charges
| | | \[W = Q \text{and} W = VI t \]
| | | • Expression for power (rate of dissipation of energy)
| | | \[P = VI \]
| | | • Obtaining
| | | \[P = I^2 R, P = \frac{v^2}{R} \text{ and} \]
| | | \[W = I^2 R t, W = \frac{v^2}{R} t \]
| | | • Application of
| | | \[W = VI t, P = VI \]
| | | for any electrical appliance
| | | Application of
| | | \[P = I^2 R, P = \frac{v^2}{R} \]
| | | \[W = \frac{v^2}{R} t \text{ and} \]
| | | for appliances producing heat only (Joule heating) | |
| | | • conduct simple activities to demonstrate that energy dissipates through any electrical apparatus when current flows.
| | | • give expressions formulae for energy dissipation due to flow of charges.
| | | • give expressions for rate of dissipation of energy.
| | | • applies \[W = VI \text{and} P = VI \] for any electrical appliance.
| | | • explains passive resistors.
| | | • uses \[P = I^2 R, P = \frac{v^2}{R}, W = I^2 R t \] and
<p>| | | [W = \frac{v^2}{R} t] to find the dissipation of heat for passive resistors. | 06 |</p>
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3 Inquires the power supply of an electric circuit quantitatively</td>
<td></td>
<td>• Electromotive force</td>
<td>• explain the formation of e.m.f. of a source using the action simple cell.</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Formation of potential difference between plates of a simple cell</td>
<td>• describe the energy transformation in different types of sources of electromotive force (emf).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Transformation of different forms of energy in various sources of Electromotive force</td>
<td>• define electromotive force (e.m.f.) in terms of the energy transformation in a source</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Definition of electromotive force</td>
<td>• expresses that rate of energy supply from the source as the product $E I$.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Introduction of internal resistance</td>
<td>• expresses the voltage difference across a source of emf with internal resistance in a closed circuit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Application of the law of conservation of energy to a circuit</td>
<td>• understands the effects of the internal resistance of an electric source on the terminal potential difference.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>having a source of electromotive force</td>
<td>• expresses the effective emf of combination of series cell.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Expression $V = E - I\gamma$ for the potential difference between the terminals of a cell in a closed circuit</td>
<td>• expresses the effective emf of combination of identical parallel cells.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Determination of electromotive force and internal resistance of a cell (graphical method)</td>
<td>• explains the condition for maximum power transfer using graph of power versus resistance.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Combination of sources of electromotive force</td>
<td>• conducts an experiment to determine electromotive force and internal resistance of a cell.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Series connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Parallel connection of identical sources</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Graphical representation of the relationship between resistance and power dissipation of a resistor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Condition for maximum power transfer (derivation is not necessary)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competency</td>
<td>Competency Level</td>
<td>Content</td>
<td>Learning outcomes</td>
<td>No. of Periods</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| 8.4 | Uses the laws and principles related to current electricity for designing circuits.| • Electric circuits
• Kirchhoff’s laws
• First law (conservation of charges)
• Second law (conservation of energy) | • writes kirchhoff’s laws.
• explains Kirchhoff’s first law on the basis of conservation of charge.
• describes Kirchhoff’s second law as one form of conservation of energy.
• applies Kirchhoff’s laws to electrical networks to solve problems. | 08 |
| 8.5 | Uses electrical measuring instruments accurately and protectively. | • Uses of Ammeter, Voltmeter and Multimeter
• Wheatstone bridge
• Relationship between resistances for balanced condition.
• Meter bridge
• facts to be considered in using meter bridge.
• Uses of meter bridge
• Finding temperature coefficient of resistance
• Potentiometer
• Principle of potentiometer
• Calibration of potentiometer
• Facts to be considered in using potentiometer
• Uses of potentiometer
• Comparison of electromotive forces
• Determination of internal resistance of a cell
• Advantages and disadvantage of using potentiometer | • Uses ammeter to measure electric current
• Uses Voltmeter to measure voltage difference
• Uses Multimeter to measure current, Voltage difference and resistance
• explain the importance of ideal ammeter and ideal voltmeter
• derives relationship among resistances of a balanced Wheatstone bridge.
• uses Wheatstone bridge relationship to find equivalent resistance of simple networks.
• uses meter bridge accurately to find the temperature coefficient of resistance.
• explains the facts to be considered in using metre bridge.
• carries out numerical calculations to solve problems using Wheatstone bridge
• explains the facts to be considered in using potentiometer.
• describes the principle of potentiometer.
• uses potentiometer to compare electromotive forces. | 12 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
</tr>
</thead>
</table>
| 8.6 Uses the laws and rules in electromagnetic induction for technical needs. | | Electromagnetic induction
- Magnetic flux and flux linkage
- Laws of electromagnetic induction
 - Faraday’s law
 - Lenz’s law
 - **Demonstrating the laws of electromagnetic induction**
Electromotive force induced in a straight rod moving in a uniform magnetic field
Expression for induced electromotive force
Fleming’s right hand rule
Electromotive force induced in a rod rotating in a magnetic field
Electromotive force induced in a disc rotating in a magnetic field | uses potentiometer to determine internal resistance of cell
compares advantages and disadvantage of using potentiometer
solves problems related to potentiometer.
- conduct activities to demonstrates the laws of electromagnetic induction.
- expresses Faradays law and Lens law.
- writes an expression for induced electromotive force of a rod moving in a magnetic field.
- writes an expression for induced electromotive force of a rod rotating in a magnetic field.
write and expressions for induced electromotive force of a disc rotating in a magnetic field
explain that the emf induced across a rectangular coil rotating in a uniform magnetic field varies with the angle between the plane of the coil and the field.
derivates expression for maximum value of induced electromotive force of a rectangular coil rotating in a magnetic field. |
<p>| | | | 20 |</p>
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromotive force induced in a rectangular coil rotating in a magnetic field and expression for maximum value</td>
<td></td>
<td>• describes the structure of the alternating current generator.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternating current generator</td>
<td></td>
<td>• expresses graphically the variation of e. m. f. of alternating current generator with time.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrangement</td>
<td></td>
<td>• states the relationship between r. m. s. value and peak value of the voltage and current.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphical representation of the variation of electromotive force with time</td>
<td></td>
<td>• states that the average power of a resistive circuit can be calculated using rms values of voltage and current.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to alternating current and voltage</td>
<td></td>
<td>• Explain the formation of back emf in a direct current motor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r.m.s value and peak value of current and voltage.</td>
<td></td>
<td>• explains the purpose of starter switch.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average power in watts in a resistive circuits.</td>
<td></td>
<td>• explains the structure and function of a transformer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eddy currents and their uses</td>
<td></td>
<td>• writes the relationship between the number of turns and voltage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back e.m.f. of an electric motor</td>
<td></td>
<td>• carries out calculations related to transformers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstration of back e. m. f. of electric motor</td>
<td></td>
<td>• explains transmission of electric power qualitatively.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect of the back e.m.f. on the armature current</td>
<td></td>
<td>• carries out numerical calculations to solve related problems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlling the initial current/starter switch</td>
<td></td>
<td>• states the relationship between input and output power of an ideal transformer in terms of voltage and current.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competency</td>
<td>Competency Level</td>
<td>Content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | • Structure
| | | • Relationship between the number of turns and the voltages of primary and secondary coils for ideal transformers.
| | | • Step-down and step-up transformers
| | | • Input and output power of the transformer
| | | • The product VI, as input / output power of a transformer
| | | • Energy loss in a transformer
| | | • Loss due to Joule heating
| | | • Loss due to eddy current
| | | • Method to minimize energy loss.
| | | • Uses of transformers
| | | • Transmission of electric power |

<table>
<thead>
<tr>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| • Introduce step-up and step-down transformer.
| • Gives examples for the uses of step-up and step-down transformers.
| • Explains energy loss due to Joule heating of a transformer
| • Explains energy loss due to eddy current.
| • Explain the uses of step-up and step-down transformer in electric power transmission. |
Unit 9 - Electronics

<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 9. Uses electronic circuits to fulfill human needs efficiently. | 9.1 Inquires about the principle of action of a semiconductor diode. | • Semiconductors
 • Intrinsic semiconductors
 • Extrinsic semiconductors
 • n – type
 • p- type
 • Junction diode
 • p-n junction
 • Depletion layer
 • Forward bias
 • Reverse bias
 • Characteristic curves of a diode
 • I-V curve of an ideal diode
 • I-V curve of a practical diode
 • Diode as a rectifier
 • Half wave rectification
 • Full wave rectification
 • Smoothing
 • Demonstration of rectification using CRO
 • Diode as a switch
 • Types of diodes
 • Zener diode
 • Voltage regulation using Zener diode
 • Light emitting diode(LED)
 • Photo diode | • identifies pure silicon and germanium as intrinsic semiconductors.
• describes extrinsic semiconductors.
• explains the formation of depletion region and voltage barrier of a p – n junction.
• represents graphically the characteristic of a practical diode and ideal diode.
• explains the action of diode in forward bias conditions.
• explains the action of diode in reverse bias conditions.
• design an experiment to obtain I – V curve of a practical diode.
• explains with relevant diagrams the uses of diode as a half wave rectifier.
• explain the full wave rectification of a bridge rectifier
• explain the smoothing of full wave rectification.
• explains the action of a diode as a switch.
• Solves numerical problems related to diodes
• conducts simple activities to demonstrate rectification of a diode.
• conducts simple activities to demonstrate diode as a switch.
• explains voltage regulation of zener diode.
• explains qualitatively the action of a LED.
• explains qualitatively the action of a photo diode. | 10 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 9.2 Uses the action of transistor for practical needs. | | • Transistor
• Bipolar transistor
・ Structure and circuit symbol of npn and pnp transistors
・ npn transistor circuits
・ Action of a transistor
・ Circuit configuration
・ Common – base
・ Common – emitter
・ Common – collector
・ Action of a transistor
Investigating the characteristics of a common emitter configuration of a transistor
・ Input characteristics
・ Transfer characteristics
・ Output characteristics
・ Biasing a transistor
・ Common emitter transistor amplifier
・ Current amplification
・ Voltage amplification
・ Common emitter transistor switch
・ Unipolar transistor (JFET)
・ Structure of p-channel and n-channel JFET
・ Action of n-channel JFET
・ characteristic curve | • explains the structure of npn and pnp transistors
• describes the action of a npn transistor with respect to electrons and holes.
• describes with appropriate diagrams, the common base, common emitter and common collector configuration of a transistor.
• conducts experiments to interpret graphically the input, output and transfer characteristics of common emitter configuration of a transistor.
• explains the biasing of npn transistors with suitable diagrams.
• describes the action and uses of a transistor in common emitter configuration as a current amplifier.
• describes the action and uses of a transistor in common emitter configuration as a voltage amplifier.
• solves problems related to transistors.
• describes the action of a transistor as a switch.
• explains the structure of n-channel and p-channel JFET.
• explains voltage amplification of an n-channel JFET using characteristic curve. | 12 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 9.3 Investigates on the uses of operational amplifier. | | • Operational amplifier
• Operational amplifier as an integrated circuit (IC)
• Identification of pins
• Action of operational amplifier
• Characteristics of the open loop state
• Uses of operational amplifier as a voltage amplifier
• Close loop state
• Golden rules I and II
• Inverting amplifier
• Non-inverting amplifier
• Use of operational amplifier as a voltage comparator/ switch | • identifies the pin numbers of operational amplifier
• describes the open loop characteristic of an operational amplifier.
• expresses the voltage gain of open loop state.
• states the properties of operational amplifier.
• explains the purpose of negative feedback and the effects on the gain of an operational amplifier.
• interprets graphically and with suitable circuit diagrams the action of inverting and non-inverting operational amplifier
• states the Golden rules I and II regarding an operational amplifier in operating in linear region
• derives an expression for the voltage gain of inverting and non-inverting amplifiers
• explains the use of operational amplifier as a voltage comparator.
• solves problems related to operational amplifier. | 06 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 9.4 Uses logic gates to control the action of digital circuits. | | • Digital electronics
 • Boolean expressions and truth tables of logic gates
 • AND gate
 • OR gate
 • NOT gate
 • NAND gate
 • NOR gate
 • EXOR gate
 • EXNOR gate
 Investigating the truth tables of basic logic gates
 • Logic expressions for simple digital circuits (maximum of three inputs)
 • Converting a given logic expression to a logic gate circuit
 • Logic expression for a truth table
 • Designing simple logic circuits
 • Electronic memory
 • Single memory element with NOR gates
 • Basic SR flip-flop (Bistable) | • writes Boolean expressions and truth tables for AND, OR, NOT, NAND, NOR, Ex-OR, and Ex-NOR logic gates.
 • develops logic expressions for simple digital logic circuits having two or three inputs.
 • converts given logic expressions into logic circuits.
 • designs simple logic circuits to suit given conditions.
 • explains basic feature of memory element using NOR gates
 • explains the action of SR flip-flop using a truth table. | 12 |
Unit 10 - Mechanical properties of matter

<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 10 Applies the knowledge on mechanical properties of matter quantitatively in scientific activities and daily pursuits. | 10.1 Selects relevant materials for day-today needs in life using the knowledge about elasticity. | • Elasticity of solids
• Tension and extension
• Load-extension graph
• Tensile stress
• Tensile strain
• Young modulus
• Stress-strain graph
• Hooke’s law
• **Determination of Young modulus of a metal using a wire**
• Energy stored in a stretched string | • conducts an experiment to investigate the relationship between tension and extension of a string or spring.
• states Hook’s law
• defines the terms stress, strain and Young modulus
• explains the behavior of materials using stress-strain graph
• identifies proportional limit, elastic limit and breaking point.
• determines experimentally the Young's modulus of a metal wire using the relationship between tension and extension.
• gives an expression for energy stored in a string / a spring under a stress
• carries out numerical calculations to solve problems related to elasticity.
• write a report mentioning where the knowledge of elasticity in used in technical purposes. | 10 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 10.2 Uses the knowledge on viscosity in scientific work and daily pursuits. | | • Viscosity
 • Viscous force
 • Coefficient of viscosity
 \(F = A \eta \frac{(v_1 - v_2)}{d} \)
 • Poiseuille’s equation for a fluid flow
 • Conditions of validity
 • Correctness of the equation through dimensional analysis
 • Determination of coefficient of viscosity by using Poiseuille’s formula
 • Motion of an object through viscous media
 • Forces acting on a spherical object
 • Terminal velocity
 • Stokes’ law
 • Correctness of formula through dimensional analysis
 • Derivation of expressions for terminal velocity
 • Object moving upwards
 • Object moving downwards | • demonstrate the differences of flowing of various liquids using simple activities.
• introduce tangential stress and velocity gradient of a fluid flow.
• defines coefficient of viscosity.
• uses the expression for viscose force to solve problem
• expresses Poiseuille’s equation for a liquid flow.
• states the conditions for the valid of Poiseulles equation.
• conducts experiment to determine coefficient of viscosity of water by capillary flow method.
• describes the forces acting on a spear moving vertically in a viscos medium.
• explains terminal velocity using \(v - t \) graph of a body moving through a viscous media.
• expresses stoke’s law.
• derives expression for the termind velocity of a sphere moving upwards and downwards in a viscos medium.
• solves simple numerical problems related to viscosity. | 15 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 10.3 Uses the knowledge on surface tension to explain the natural phenomena and to fulfill the daily pursuits. | | • Surface tension
• Definition of surface tension
• Angle of contact
• Relationship between nature of the liquid meniscus and the angle of contact
• Free surface energy
• Expression for the work done in increasing the surface area of a liquid film isothermally
• Relationship between surface energy and surface tension
• Expression for pressure difference across a spherical meniscus
• Capillary rise
• Expression for capillary rise
Determination of surface tension
• Using a microscope slide
• Capillary rise method
• Jaeger’s method | • demonstrates the behavior of free surface of a liquid using simple activities
• explains the behavior of free surface of a liquid using inter-molecular forces
• defines surface tension.
• defines surface energy.
• obtain the relationship between surface energy and surface tension.
• describes the angle of contact with the help of diagrams.
• derives an expression for pressure difference across spherical meniscus in terms of surface tension and the radius of the meniscus.
• explains capillary rise in terms of angle of contact and pressure difference across the meniscus.
• derives an expression for capillary rise in terms of surface tension, angle of contact and radius of the meniscus.
• conducts experiments to determine surface tension by using microscope slide method.
• conducts experiments to determine surface tension by using capillary rise method.
• conducts experiments to determine surface tension by using Jaeger’s method.
• solves problems related to surface tension. | 15 |
Unit 11 - Matter and Radiation (30 periods)

<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Inquires the Modern theories in physics.</td>
<td>11.1</td>
<td>• Quantum nature of radiation</td>
<td>• explains thermal radiation of bodies at various temperatures using activities and examples</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Black body radiation</td>
<td>• describes the intensity distribution of blackbody radiation using the graph of intensity Vs wave length for various temperatures</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Stefan’s law</td>
<td>• States Stefan’s law.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Modification of the Stefan’s law for non-black bodies</td>
<td>• relate the temperature and intensity of black body radiation using Stefan’s law.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Intensity distribution of black body radiation</td>
<td>• use the modification of the Stefan’s law.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wien’s displacement law</td>
<td>• states Wien’s displacement law.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Failure of the classical physics to explain the distribution of intensity of radiation</td>
<td>• use Wien’s displacement law for relevant instances.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Planck’s hypotheses</td>
<td>• describe the failure of classical physics in explaining the black body radiation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• explain Plank’s hypothesis using the appropriate terms.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• accepts the quantum nature of radiation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• accept that plank’s theory can be used to explain black body radiation.</td>
<td></td>
</tr>
<tr>
<td>Competency</td>
<td>Competency Level</td>
<td>Content</td>
<td>Learning outcomes</td>
<td>No. of Periods</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| 11.2 Applies the quantum theories to explain the photoelectric effect. | | ● Photoelectric effect
• Threshold frequency
• I-V graphs
• Stopping potential
• Graph of frequency against stopping potential
• Graphs for different metals
• Failure of the classical physics to explain photoelectric effect
• Hypotheses put forward by Einstein to explain the photoelectric effect Explaining photoelectric effect considering energy quanta (photon)
• Work function
• Einstein’s photoelectric effect equation
• Relationship between work function and threshold frequency
• Relationship between stopping potential and maximum kinetic energy | ● describes the phenomenon of photoelectric effect using photoelectric effect experiment.
● identifies the threshold frequency (or cutoff frequency)
● explain the stopping potential
● Draws I-V graphs for photoelectric effect
● accepts that classical physics cannot be used to explain the results of the photoelectric effect.
● states Einstein’s hypotheses
● explains the photoelectric effect using photon theory.
● explains Einstein’s photoelectric equation by introducing its terms.
● relates threshold frequency to the work function.
● relates stopping potential to the maximum kinetic energy.
● solves numerical calculation using photoelectric equation
● explains why the maximum kinetic energy is independent of intensity.
● explains why the photoelectric current is proportional to intensity. | 06 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 11.3 Inquires about wave particle duality | | • Wave nature of matter
• de Broglie wavelength for matter waves
• Evidences about wave nature of matter
• Principle of electron microscope | • gives evidence about wave nature of matter.
• accept that any particle of a specific momentum has an associated wavelength called the de Broglie wavelength.
• applies the de Broglie hypothesis for determination of the de Broglie wavelength of matter waves associated with a moving particle.
• explains the principle of electron microscope. | 02 |
| 11.4 Uses X – rays to fulfill human needs. | | • X – rays
 • Production of X – rays
 • Properties of
 • X – rays
 • Uses of X – rays | • explains the discovery of X-rays
• describes the method of production of X-rays
• explains the properties of X-rays
• explains qualitatively how X-rays can be used in different fields (medical, industrial, et.). | 02 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
</table>
| 11.5 Inquires about radioactivity to fulfill human needs. | Radioactivity | - Natural radioactive decay
- Emission of α- particles
- Emission of β- particles
- Emission of γ-rays
- Radioactive disintegration law
- Graphical representation
- Decay constant
- Activity
- Half life
- Uses of radioactivity
- Radioactive dating (C-14)
- In medicine, engineering and agriculture
- Health hazards of radiation and safety precautions
- Measurement of quantity of radiation
- Radiation dose (Gy)
- RBE (Relative Biological Effectiveness) / Q (Quality Factor)
- Effective dose (Sv)
- Health hazards
- time of expose
- Area of the body which exposed to radiation
- Safety precaution | explains the natural radioactivity and its properties.
explains emission of α, β and γ radiation
explains and measure the radio activity of different places of environment using gaiger counter
describes the radioactive decay, the radioactive disintegration law and the graph.
explains the decay constant, activity and half-life time.
explains the use of radioactivity in medicine, engineering, agriculture and radioactive dating.
explains the background radiation.
explains the radiation dose (Gy)
explains RBE/Q
explains the effective dose (Sv)
explains the time of expose,
explains area of the body which exposed to radiation.
explains the safety precautions.
explains the background radiation, the health hazards and safety precautions.
Carry out numerical calculations to solve problems related to radioactivity. | 06 |
<table>
<thead>
<tr>
<th>Competency</th>
<th>Competency Level</th>
<th>Content</th>
<th>Learning outcomes</th>
<th>No. of Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.6 Inquires about the nuclear energy and its uses</td>
<td></td>
<td>Atomic nucleus</td>
<td>identifies the atomic structure, the nucleus, the isotopes, nuclear notation and the atomic mass unit.</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stability of nucleus</td>
<td>explains stability of nucleus.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unified atomic mass unit</td>
<td>explains mass defect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mass defect</td>
<td>states Einstein’s mass - energy equation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Einstein’s mass – energy equation</td>
<td>explains binding energy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Binding energy</td>
<td>describes graphical representation between atomic number and binding energy of a nucleon.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graphical representation between atomic number and binding energy of a nucleon</td>
<td>compares the energy released in chemical reactions and nuclear reactions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comparison of energy released in chemical reaction and nuclear reaction</td>
<td>explains the nuclear fission and the process of chain reaction which may be controlled (nuclear power) or uncontrolled (atomic bomb)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nuclear energy</td>
<td>explains the fusion reaction in other stars, and the production of elements.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nuclear fission</td>
<td>conducts a survey and prepare a report on the study that can be take to assure the safeguard during a radiaction disaster using information technology.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action of an atomic bomb</td>
<td>explains the nuclear fusion, its process, fusion reaction inside the sun/in other stars, and the production of elements.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action of a nuclear power station</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nuclear fusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conditions necessary for fusion reaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fusion reaction inside the sun</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attempt of using fusion reaction for producing energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competency</td>
<td>Competency Level</td>
<td>Content</td>
<td>Learning outcomes</td>
<td>No. of Periods</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| 11.7 Inquires about the fundamental constituents of matter and their interactions | | • Introduction to particle physics
• Experimental approach probing the structure of matter
• Requirement of high energy particles
• Need of particle accelerators and detectors
• Elementary particles
 • quarks
 • leptons
• Fundamental interactions
• Gravitational force
• Electromagnetic force
• Strong force
• Weak force | • accepts that particle physics is the modern version of an age-old quest to find the smallest pieces of matter
• explains that high momentum particles are required to find the structure of matter
• explains that cosmic rays are the natural source of high energy particles.
• explains that particle accelerators are used to produce high energy particles
• explains that detectors are used to analyze the outcome of particle collisions
• explains that a large number of elementary particles were discovered
• states that protons and neutrons are made of quarks
• states that electrons belong to the lepton group.
• identifies the source and strength of each fundamental interaction. | 04 |
4.0 Teaching - Learning Strategies

Global trend in present day education is to introduce competency based curricula which promote collaborative learning through student-centered activities where learning predominates over teaching. It is intended for the students to actively participate in activities which enhance the development of individual, social and mental skills. Emphasis is laid on the following aspects.

- Allow the students to acquire hands on experience.
- Direct students to acquire knowledge and information through reliable sources wherever necessary.

5.0 School policy and programmes

- The teacher has the liberty to follow any suitable teaching learning method to achieve the relevant learning outcomes.
- It is expected that the theoretical components of each unit will be dealt with the relevant practical components, which are given in italics.
- Capacity of students should be enhanced through extra-curricular activities, extensive use of supplementary reading materials and learning teaching aids such as Computer Assisted Learning (CAL) software.
- With a view to extending learning beyond the classroom activities and to highlight the students’ special abilities, it is expected to involve students in co-curricular activities such as:
 - setting up school societies or clubs to pursue various aspects of chemistry
 - field trips to places where applications of chemistry can be observed and preparation of reports subsequently
 - organizing school exhibitions and competitions
 - organizing guest lectures on relevant topics by resource persons
 - producing school publications
 - organizing events such as debates, science days, etc.
• School management is responsible in providing services such as lab equipments, computer facilities, etc. and assistance within the school and from outside resources.

• In order to develop school policy and programmes it would be desirable to form a committee comprising relevant teachers and students.

• Most importantly, the school should serve as a role model to be followed by the students.

• School will develop its annual programmes, consisting of a variety of activities for achieving policy goals. In determining the activities to be undertaken during a particular year, the school will need to identify priorities and consider feasibility in relation to time and resource constraints.

6.0 Assessment and Evaluation

Assessment and Evaluation should conform to the standards set by the Department of Examinations. However, school-based assessment should also be part and parcel as it paves way to give direct feedback to learners.